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Our Data — Aerosol Science

Understand the processes that
control formation,
physicochemical properties and
transformations of particles

Acquired by a state-of-the-art

single particle mass
| spectrometer (SPLAT II) often




Our Data — Aerosol Science

SPLAT II can acquire up to 100 particles per second
at sizes between 50-3,000 nm at a precision of 1 nm

= (Creates a 450-D mass spectrum for each particle

Overall Goal: SpectraMiner

Build the hierarchical
structure of particles that
can be used in
automated classification
of new particle
acquisitions




Our Data — Aerosol Science

Data Scale:

= 450 dimensions

= Typically, several millions of points
Goal:

= Qverall: hierarchical (tree) structure

= In this talk: parallel clustering algorithms for
» Redundancy elimination
» Learning the leaf level of the tree




Incremental k-Means — Sequential

The old CPU-based solution

Input: data points P, distance threshold ¢
Output: clusters C

C = empty set
for each unclustered point p in P
if C is empty then

Make p a new cluster center and add it into C
else

p = next unclustered point

Find the cluster center c in C closest to p

let d = distance(c, p)

if d < t then Cluster p into c

else Make p a new cluster center added to C
end if
end if
end for
return C




Incremental k-Means — Parallel

NEW GPU-based solution

Input: data points P, distance threshold ¢, batch size b, max
iteration M

Output: clusters C
C = empty set
while number of un-clustered points in P> ()

Run Alg. I until a number of b clusters B emerge
Iteration i = 0

while i < M and B is not stable
in parallel:
for each unclustered point p;
Find the center b; in B closest to p;
if distance(b;, p;) < t then ¢; = b;
else c; = null
end for
on CPU: Assign p; to b; if ¢; is not null
in parallel: update centers of B
end while
Add B to C
end while
return C
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GPU Thread Block: 32 x 32 threads
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If we set the batch size b
= A group of 96/32

= Number of thread block launched: N/32




Dimension Reduction and the Threshold ¢
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Comments and Observations

Algorithm merges the incremental k-means
algorithm with a parallel implementation (k=C)
Design choices:
C=96 good balance between CPU and GPU utilization
With C>96 algorithm becomes CPU-bound
With C<96 the GPU would be underutilized
A multiple of 32 avoids divergent warps on the GPU
Max iterations = 5 worked best

Advantages of the new scheme:
= Second pass of previous scheme no longer needed




GPU Implementation

Platform
= 1-4 Tesla K20 GPUs
» Installed in a remote ‘cloud’ server

Parallelism
Launch N/32 thread blocks of size 32 x 32 each
Each thread compares a point with 3 cluster centers

Make use of shared memory to avoid non-coalesced
memory accesses




Quality Measures

Cluster quality measure: Davies-Bouldin (DB) index

DB—lzn: g; + o;
= max( M, )

=N

o; - Intra-cluster distance
M;; - inter-cluster distance

The lower the DB, the better the quality




Acceleration by Sub-Thresholding

» Sub-thresholding:

Points with small distance to the center are settled
and will not be re-visited in inner iterations

» This also somehow improves the DB index

Data Size | Sequential | Parallel
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Results — Different Settings
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About 33x speedup
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Results — Multi-GPU
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4-GPU has about 100x speedup over sequential




[n-Situ Visual Feedback (1)

Visualize cluster centers as summary snapshots
=  Glimmer MDS algorithm
= Intuitive 2D layout
Color map:
= Small clusters map to mostly white
= large clusters map to saturated blue
We find that early visualizations are already quite
revealing

= This is shown by cluster size histogram
» (luster size of M>10 is considered significant
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Conclusions and Future Work

Current approach quite promising
» Good speedup and results
= In-situ visualization of data reduction process with
early valuable feedback

Future work
More efficient data storage facilities
Load-balancing point for multi-GPU
Accelerate the hierarchy building
A comprehensive VA system




Final Slide

Thanks for attending!
And thanks to NSF and DOE for funding

Any gquestions?




